Decision-Theoretic Refinement Planning: A New Method for

Clinical Decision Analysis*

-

AnHai Doan, B.5., Peter Haddawy, Ph.D., Charles E. Kahn, Jr.,M.D.
Department of Electrical Engineering and Computer Science,

University of Wisconsin - Milwaukee, Milwaukee, Wisconsin

Clinical decision analysis seeks to identify the
optimal management strategy by modelling the un-
certainty and risks entailed in the diagnosis, natu-
ral history, and treatment of a particular problem
or disorder. Decision trees are the most frequently
used model in clinical decision analysis, bul can
be tedious to construct, cumbersome to use, and
computationally prohibitive, especially with large,
complez decision problems. We present a new
method for clinical decision analysis that combines
the techniques of decision theory and artificial in-
telligence. Our model uses a modular represen-
tation of knowledge that simplifies model building
and enables more fully automated decision mak-
ing. Moreover, the model exploits problem struc-
tures to yield betler computational efficiency. As
an example we apply our techniques to the problem
of management of acute deep venous thrombosis.

INTRODUCTION

Clinical decision analysis, an analytic approach
to decision making based on decision theory, is
increasingly used to seek optimal decisions (or
“strategies”) for clinical protocols as well as man-
agement of individual patients [1].

Typically, a decision analyst will construct a
set of decision trees to evaluate potential man-
agement strategies. There are two disadvantages
to decision trees. First, even with the help of
currently available software packages, construct-
ing and evaluating decision trees remains tedious,
and requires meticulous attention to avoid intro-
ducing errors. Second, the algorithms to identify
the optimal strategy in large, clinically relevant
decision problems may be computationally infeasi-
ble. These problems must be addressed if decision

*This work was supported in part by the Na-
tional Science Foundation grant #I1RI-9207262 (PH),
the 1993 American Roentgen Ray Society Scholar-
ship (CEK), and National Library of Medicine grant
LM05705 (for Integrated Advanced Information Man-
agement Systems [IAIMS] planning at the Medical
College of Wisconsin).

0195-4210/95/$5.00 © 1995 AMIA, Inc.

299

analysis is to gain widespread practical use and to
be integrated into large decision support systems.

The area of artificial intelligence known as
decision-theoretic planning has yielded new, alter-
native approaches for decision-making models. We
introduce the abstraction-based model [2], which
addresses the problems identified earlier in the de-
cision tree model. We applied this abstraction-
based model to a clinical problem to demonstrate
the model’s practical advantages over the decision
trees. We refer to the full paper [3] for more de-
tailed description of the model, and discussion of
additional issues.

ACUTE DEEP VENOUS
THROMBOSIS

Appropriate management of patients with sus-
pected acute deep venous thrombosis (DVT) of
the lower extremities remains an important and
complex clinical problem. The clinical findings
of DVT do not permit diagnosis with certainty
[4]. Unchecked, DVT of the calf veins (calf-
DVT) can progress to the deep veins of the thigh
(thigh-DVT), which can cause pulmonary em-
bolism (PE), a condition that entails significant
morbidity and mortality. Anticoagulation therapy
for DVT is expensive and carries the risk of hemor-
rhage. Even diagnostic procedures such as venog-
raphy entail risks such as iatrogenic thrombosis or
contrast reaction.

We constructed a model for diagnosis and treat-
ment of DVT based on data from an article
that compared 24 different management strategies
[5]. The available diagnostic tests are venography
(Venography), impedance plethysmography (IPG),
and real-time ultrasonography (RUS). The physi-
cian can perform a combination of tests before de-
ciding whether to treat; the decision of whether to
perform a subsequent test, or treat, or do nothing
at all, is based on the findings of previous tests.
Tests can be performed in immediate succession,
or can be separated by a waiting interval. So the
physician can perform nine basic actions: Venog-
raphy, IPG, RUS, don’t test, treat, don’t treat,

. "Flattened strategy trees”
+_ IPG
PG } —> PG, IPG-if-positive

Do nothing

+ _ Do nothing

PG [> [PG. IPG-if-negative

(a)

(add-action PG (add-action [PG-if-negative
(cond ((and (thigh-dvt=1)
(dead = 0) (pe = 0))
(I (NITResult=+) 095
(NITResult=-) 0.05
(cost=cost +120) 1))

(cond ((and (thigh-dvt = I) (NITResult = -)
(dead = 0) (pe =0))
(1 (NITResult=+) 0.95
(NITResult=-) 0.05
(cost=cost +120) 1))

(and (thigh-dvt = 0)
(dead =0) pe = 0)
(1 (NITResult=-) 09
(NITResult=+) 0.1
(cost = cost + 120) 1))

(and (thigh-dvt = 0) (NITResult = -)
(dead = 0) (pe = 0)
(I (NITResult=-) 0.9
(NITResult=+) 0.1
(cost =cost + 120) 1))

(or (dead = 1) (pe = 1))
1

(or (NITResult # -)
(dead = 1) (pe = 1))

()

(b ©

Figure 1: (a) Mapping between strategy trees and
plans (b) Action descriptor as specified in the
DRIPS planner for IPG (c) Action descriptor for
the composite action IPG_if_negative

wait, don’t wait, and do nothing. Each basic ac-
tion describes what is true after performing the
action, conditioned on what 1s true before the ac-
tion. The descriptions of these actions are sup-
plied by the physician. Figure 1.b shows for ex-
ample how the action of performing the IPG test
1s described in our model using Lisp code. The
first line specifies the action’s name as IPG. The
second through the sixth lines describe the case
where thigh-DVT is present (thigh-dvt = 1), the
patient is not dead (dead = 0) and does not have
diagnosed pulmonary embolism (pe = 0). Here
NIT stands for “noninvasive tests”, and NITRe-
sult refers to the result of a noninvasive test (IPG
or RUS). In the above case performing IPG will
give a positive result with probability 0.95 ((NI-
TResult = +) 0.95), which means that a negative
result will occur with probability 0.05 ((NITRe-
sult = -) 0.05); the cost of the test is $120 and is
indicated by saying the overall cost is increased by
$120 (cost = cost + 120). The next five lines de-
scribe the effects for the case where thigh-dvt is not
present. The last two lines specify that in the case
the patient is dead or has diagnosed pulmonary
embolism the test is not performed.

300

THE ABSTRACTION-BASED
DECISION MODEL

We begin with some terminology for the decision
tree model. The user supplies a set of basic ac-
tions, e.g., the set of nine actions described earlier
for the DVT domain. The decision problem has
many stages; in each stage we choose to perform
a basic action based on the findings of the actions
performed in the earlier stages. For example. if in
the first stage we choose to perform IPG, then in
the second stage we can decide to perform a basic
action (a second IPG, say) or not based on whether
the outcome of IPG is positive or negative; four
decision combinations can thus be formulated for
the second stage, and we call such a combination
a stage policy.

Assume now that in the second stage we are
considering two policies: either perform IPG if the
first IPG’s outcome is positive, and do nothing if
negative; or perform IPG if the first IPG’s outcome
1s negative, and do nothing if positive. This will
create in the tree model two subtrees representing
two incomplete strategies (Figure l.a).

In our model each strategy can be represented
by “flattening” its corresponding tree, and we now
proceed to show how. Consider the two strategies
mentioned above. We first create two composite
actions representing two considered policies at the
second stage: IPG_if_negative has the effect of IPG
on the branches where the first test’s outcome is
negative, and the effect of doing nothing on the
other branches; IPG_if_positive has the effect of IPG
on the branches where the first test’s outcome is
positive, and the effect of doing nothing on the
other branches. Figure l.c shows the description
of action IPG_if_negative, which is created from the
description of IPG.

We now can “flatten” two subtrees representing
two strategies into two plans, each 1s a sequence
of (basic or composite) actions appearing in the
stages of the tree. For example the first strat-
egy becomes the plan IPG, IPG_if_negative, - - (Fig-
ure l.a). Calculating the expected utility of this
plan means first restoring the tree representing the
strategy, then using the tree to calculate the ex-
pected utility for the root node, which is returned
as the plan’s or strategy’s expected utility. In this
manner, for all strategies represented in a (set of)
decision tree(s), each can be represented with a
plan. To do this, all considered stage policies must
first be converted into composite actions. We note
that the number of stage policies worthy of consid-
eration tends to be small; they can be identified
without ever building the decision tree, and the
creation of composite actions involves very little
work from the user.

So far we have only shown an alternative repre-
sentation to the decision tree model. The strength

- ~-§=:~~—
//’ / TSI ———
/’// // -\\\~‘ ~~~~~~~~~
No_Tests_and_TreaI/ Veno_Tests NIT_Tests Two_Tests
No_Tests Treat_None/All Venography Treat_Veno N Treat_NIT
N N 7N
7 N S N FARERN
\
Vs N . S
Tre/at_None Tr\eat_AII Treat_None/All Treat_if_Veno If(. RUS
7/ A\
s/ N
/ AN
Treat_if Treat_if
Veno_Thigh+ Veno Any+
Two_Tests Test_if NIT-
/\
7 N\
7/ \,
// \
aybe_Wait Test_if Treal_Veno_NIT Veno_if NIT- Nﬁ_i;(NlT—
\,
// \\ // \\ // \
w/ \ // \\ / 4 \\
Don’t_Wait Wait Test_if NIT- Veno_if NIT+ IPG_if RUS_if
NIT- NIT-

Figure 2: A partial description of the abstraction hierarchy (tree) for the DVT domain. Inter-abstractions
are shown with dashed lines and sequential abstractions are shown with solid lines. Actions in bold letter

are leaves, denoting composite or basic actions.

of this new representation is the ability to per-
form abstraction to reduce computation. Consider
the above two plans. Since in the first stage we
can also choose to perforn RUS instead of IPG,
we can add RUS to the first stage to have four
plans instead of two. Since IPG and RUS are
very similar, 1t seems reasonable to try to abstract
these two tests into a new test NIT (noninvasive
test). We now have only two plans: p; as NIT,
IPG_if_negative, - - -; and py as NIT, IPG_if_positive,
---. We say IPG and RUS are two instantiations of
the action NIT; plan IPG, IPG_if_negative, - - is a
subplan of plan p;, obtained by replacing the first
action in plan p; with one of its instantiations. An
action created by asbstracting a set of actions is
called an abstract action. A plan containing only
basic or composite action(s) is called a concrete
plan, otherwise it is an abstract plan. We require
the abstraction technique to ensure that for each
abstract plan a numeric interval called the ezpected
utility of the plan can be computed in a manner
similar to computing the expected utility of a con-
crete plan, and the interval of the expected utility
of a plan includes the expected utility of any of
its subplans. We have reported abstraction tech-
niques satisfying these requirements in [6].

Consider the case when the lower bound of
plan pi’s utility interval is greater than the up-
per bound of plan po’s utility interval, from the

301

abstraction requirements it follows that any sub-
plan of ps has lower expected utility than any sub-
plan of p;, and therefore cannot be the optimnal
plan. We can eliminate the plan py, obtain two
subplans of p;, calculate their expected utilities,
and choose the one with higher utility as the opti-
mal plan (strategy). Note that the expected util-
ities of the subplans of py are never calculated.
The computational savings of our model rest on
this observation. When eliminating a plan, the
more subplans that plan contains, the higher the
savings. We call abstracting a set of actions in a
stage into a new action inter-abstraction. It is also
possible to abstract actions in neighboring stages
into an action, e.g., if before the second testing we
insert a stage of performing the wait action, we
can abstract the NIT action of the first stage with
the wait action of the next stage, thus reducing
the number of stages. This type of abstraction is
called sequential abstraction.

We are now in a position to formalize our ap-
proach. The user first supplies a set of basic ac-
tions. He/she then proceeds to create composite
actions according to stage policies deemed wor-
thy of investigation. Next an abstraction hierar-
chy is specified which encodes all plans (strate-
gies) worth consideration. A part of the abstrac-
tion hierarchy for the DVT domain in the case
where only up to two diagnostic tests are allowed

1s shown on Figure 2. The hierarchy is actually
a tree with composite or basic actions as leaves
and abstract actions as its higher level nodes. The
root Manage_DVT, the most abstract action, is an
abstraction of four actions: No_Tests_and_Treat,
Veno_Tests, NIT_Tests, Two_Tests. (The number
of tests represents the length of the longest al-
lowed sequence of tests.) Each of these actions
further decomposes into a sequence of actions
(sequentially abstracted from actions in the se-
quence). For example, NIT_Tests decomposes into
NIT, Treat_NIT. Due to space limitations, the sub-
trees for the actions Treat_NIT and Treat_Veno_NIT
are not shown. This hierarchy encompasses 1022
concrete plans; for example, one plan (an instance
of the Two_Tests action) is “IPG, Wait, Veno_if_
NIT-, Treat_if_Veno_Any+” (Treat_if_-Veno_Any+ is
obtained from refining Treat_Veno_NIT). The user
now feeds the descriptions of the composite ac-
tions, the hierarchy, and a function specifying how
the utility of an outcome is computed (e.g., speci-
fying utility to be direct health care cost, the prob-
ability of survival, or a combination of both). The
planner (computer) performs the following algo-
rithm to locate the optimal plan.

1. Create a plan consisting of the root action and
put it into the set plans.

2. Until there is no abstract plan left in plans,

e Choose an abstract plan P. Refine P by
replacing an abstract action in P with all
its instantiations, yielding a set of subplans
{Py,Pa,...,P,}. For each instantiation that is
sequentially abstracted, replace it with the se-
quence of actions from which it is abstracted.

e Compute the expected utility of all the sub-
plans.

e Remove P from plans and add {P, P, ..., P,,}.

e Eliminate suboptimal plans in plans by com-
paring their utility intervals.

3. Return plans as the set of optimal plans.

This algorithm has been implemented as the DRIPS
(decision-theoretic refinement planning) system.
Since DRIPS only eliminates plans that it can prove
are suboptimal and if run to completion explores
the entire space of possible plans, it is guaranteed
to find the optimal plan(s).

RESULTS

To investigate the applicability of our approach
to the area of medical decision making we used
the DRIPS systemn to evaluate the DVT domain de-
scribed earlier, adding the case of performing up to
three tests. This new DVT domain encompasses
6,206 plans. For symplicity in this paper we define
the optimal strategy to be the one with the lowest
direct health care cost. Based on the “standard

302

Figure 3: (a) Run times for DRIPS and a branch-
and-bound decision tree evaluation algorithm for
various costs of fatality (b) Run times per plan
and (¢) memory comsumption for DRIPS and the
branch-and-bound algorithm for problems of in-
creasing size. Memory consumption values repre-
sent the maximum mermory size that is required
at one time by each algorithm.

model” assumptions of the original model [5], in
which the cost of a fatal event was set at $30,000,
DRIPS determined that the plan with the highest
expected utility was their Strategy A, “No Tests,
No Treatment.” The cost of this plan differed from
the cost identified in the reference manuscript. In
fact, for several other plans, DRIPS calculated cost
values that differed from those published in the
source manuscript. In attempting to resolve this
discrepancy, we discovered that at least one of the
24 decision trees constructed by Hillner and col-
leagues was incorrect [7].

Evaluating this model on our DEC 5000/200
machine with unoptimized code written in Corn-
mon Lisp took less than eight minutes. This good
performance is due to the fact that DRIPS used
the abstraction hierarchy to discard 5,551 (89%) of
the 6,206 possible management strategies without
explicitly identifying them, and calculating their
expected utilities. Such pruning is important to
gain computational efficiency in large models.

We also used DRIPS to perform a simple one-
way sensitivity analysis on the cost of a fa-
tal event. The optimal plan remained “No
tests, no treatment.” for a cost of fatality be-
tween 0 and $73,630, At values for cost of fa-
tality between $73,630 and $200,000, the optimal

plan became “Perform IP(:, don’t wait, perform
venography if IPG: was positive (Veno_if NIT+),
and treat only if venography shows thigh DVT
(Treat_if_-Veno_Thigh+).”

In order to demonstrate the computational ef-
ficiency of DRIPS, we compared it to a standard
branch-and-bound algorithm for evaluating deci-
sion trees. The comparison was done by run-
ning both algorithms on the DVT domain, vary-
ing domain size and parameters. Figure 3.a shows
the running time for DRIPS and the decision tree
branch-and-bound algorithm on the DVT domain
of up to three tests and cost of fatality ranging
from $50,000 to $500.000. DRIPS outperforms the
branch-and-bound algorithm at all values. We
also applied both algorithms to four versions of
the DVT domain in which the maximal number
of tests allowed is varied from one to four. Figure
3.b shows the run times per plan for DRIPS and
the branch-and-bound algorithm for each of the
domains. The run time per plan for the branch-
and-bound algorithm increases markedly (from .86
seconds per plan to 1.96 seconds per plan) as the
dornain size increases while the run time per plan
for DRIPS actually decreases (from .32 seconds per
plan to .21 seconds per plan). This means that
the relative efficiency of DRIPS over the branch-
and-bound algorithm increases as the domain size
increases. Figure 3.c shows that the memory us-
age of DRIPS also compares favorably to that of the
branch-and-bound algorithm over this saine suite
of problems. In the most extrerme case, DRIPS uses
only 4.4% as much memory as the branch-and-
bound algorithm.

DISCUSSION

We have demonstrated empirically that our ap-
proach has far better computational resource uti-
lization than that of the decision tree model. As
we argued, this 1s necessary if clinical decision
analysis 1s to be successfully integrated ito de-
ciston support systems. The time efficiency of our
algorithm also allows the user to relax symplifying
assumptions made on the model and to consider
more strategies, thus permitting more comprehen-
stve exarmnation of the domain.

Although creating the composite actions and
the abstraction hierarchy is easy, calculating the
descriptions for abstract actions based on the com-
posite actions proved to be a tedious job. We
are working on automating this calculation process
[8]. We are also investigating how to automatically
specify the optimal abstraction hierarchy. Our ap-
proach works with any abstraction hierarchy, but
some are better than the others since they pro-
vide better pruning. This is currently a topic of
intensive research in planning; the main idea is to
exploit domain structure and utility function regu-
larities to decide what actions are best abstracted

303

together.

Our approach also allows the model builder to
provide “modules” of information: the descrip-
tions of each action can be highly compartmental-
ized. Action modifications are performed by the
user only on the small set of basic and composite
actions, thus avoiding potential construction and
modification errors associated with building deci-
slon trees.

References

[1] Kassirer JP Paulker SG. Decision analysis.
New Engl J Med, 316:250-258, 1987.

P. Haddawy, A. Doan, and R. Goodwin. Ef-
ficient, decision-theoretic planning: Techniques
and empirical analysis. In Proceedings of the
Eleventh Conference on Uncertainty in Artifi-
cial Intelligence, Montreal, August 1995. To
appear.

3] P. Had-
dawy, A. Doan, and C.E. Kahn. Decision-
theoretic refinement planning in medical deci-
sion making: Management of acute deep ve-
nous thrombosis. Submitted to Journal of
Medical Decision Making. Available via www
at http://www.cs.uwm.edu/faculty /haddawy.

Landefeld S, McGuire E, Cohen AM. Clinical
findings associated with acute proximal deep
vein thrombosis: a basis for qualifying clinical
judgment. Am J Med, 88:382-388, 1990.

Hillner BE, Philbrick JT, Becker DM. Opti-
mal management of suspected lower-extremity
deep vein thrombosis: an evaluation with cost
assessment of 24 management strategies. Arch
Intern Med, 152:165-175, 1992.

A.H. Doan and P. Haddawy. Decision-
theoretic refinement planning: Principles and
application. Technical Report TR-95-01-01,
Dept. of Elect. Eng. & Computer Science,
University of Wisconsin-Milwaukee, January
1995. Available via anonymous FTP from
pub/tech_reports at ftp.cs.uwn. edu.

[2]

[4

et

CE Kahn, Jr and P Haddawy. Management, of
suspected lower-extremity deep venous throm-
bosis (letter). Archives of Internal Medicine,
155:426, February 1995.

A. Doan and P. Haddawy. Generating macro
operators for decision-theoretic planning. In
Working Notes of the AAAI Spring Sympo-
stum on Eztending Theories of Action, Stan-
ford, March 1995.

